

### Combining Scaling and Classification: A Psychometric Model for Scaling Ability and Diagnosing Misconceptions

Laine Bradshaw The University of Georgia

Cognition and Assessment SIG Business Meeting April 30, 2013





- Sample Multiple Choice Item
  - Ways to psychometrically model this item
- Scaling Individuals and Classifying Misconceptions (SICM) model
  - New psychometric model developed through my dissertation
- Brief results from empirical data analysis
  - Force Concepts Inventory



#### **Example Multiple Choice Item**

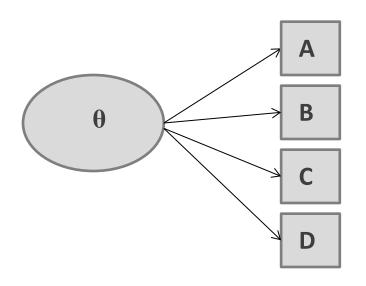
Which of the following operations correctly shows how to find the area, in inches, of a rectangle that is 3 feet long and 8 inches wide?

(a) 36 in. x 8 in. Correct!
(b) 8 in. x ¼ in. Confusion with converting units
(c) 36 in. + 36 in. + 8 in. + 8 in. Confuses area with perimeter
(d) ¼ in. + ¼ in. + 8 in. + 8 in. Confusion with converting units and area

- Not uncommon to find items written like this one
  - Incorrect options align to common student conceptions or errors
    - In science (e.g., Hestenes, et al., 1992; Sadler, 1998; Sadler, et al., 2010)
    - In statistics (e.g., Garfield, 1998; Khazanov, 2009)
    - In general, test design practices seek "plausible" distractors
- How do we statistically capitalize on this rich information?

### **Psychometric Choices**

- The psychometric model chosen should
  - Reflect empirical theories of the domain-specific science
  - Provide types of information that teachers and students seek
- Common choices
  - Practical model: CTT total scores and subscores
  - Research settings: NR IRT model (Bock, 1972)
    - Capture the unique information in the item response
    - Item response is a function of an overall continuous math ability (θ)
- Alternate choice
  - Scaling Individuals and Classifying Misconceptions (SICM) model was tailored for this kind of item
  - Item response is a function of:
    - An overall continuous math ability  $(\theta)$
    - Two categorical misconceptions (α):


 $\alpha_1$  = confuses area with perimeter

 $\alpha_2$  = difficulty with multiplicative comparisons needed to make conversions among units

• Four possible misconception patterns(α)

#### **NR IRT Item Response Function**

- IRT methods scale examinees by locating them along a **single continuum** according to an overall ability
- $\bullet$  Item response is a function of student's overall continuous math ability ( $\theta)$



$$\begin{bmatrix} q_{\alpha_1} & q_{\alpha_2} \\ A \begin{bmatrix} 0 & 0 \\ 1 \end{bmatrix} \\ B \begin{bmatrix} 0 & 0 \\ 1 \end{bmatrix} \\ C \begin{bmatrix} 0 & 0 \\ 1 \end{bmatrix} \\ D \begin{bmatrix} 0 & 0 \\ 1 \end{bmatrix} \\ \end{bmatrix}$$

#### **NR IRT Item**



θ

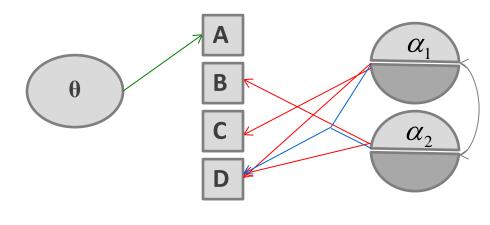
#### This information is useful for:

- Comparing students' abilities (for scholarship or awards)
- Tracking growth on an (assumed) interval level

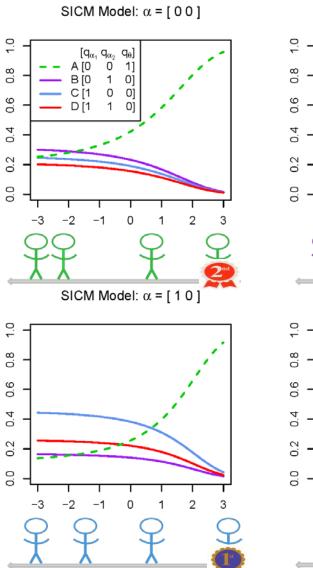
What about the errors or misconceptions?

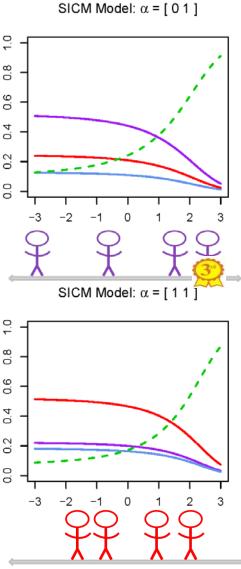
#### What about the errors, or misconceptions?

- Frequently, CTT methods are used
  - Subscores for the number of times a student selects an incorrect alternative aligned to a misconception
- Problems
  - Small number of items per misconception
  - Are item responses independent conditional on ability alone?

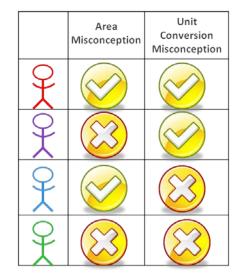

#### What about the errors, or misconceptions?

- The SICM model offers an alternate solution
  - Harnesses practicality of diagnostic classification models
    - Provide more reliable multidimensional feedback with small number of items
    - How? Use categorical latent variables
  - Includes misconceptions as a part of the item response function
    - Models misconceptions as a latent variable


### **SICM Model Item Response Function**

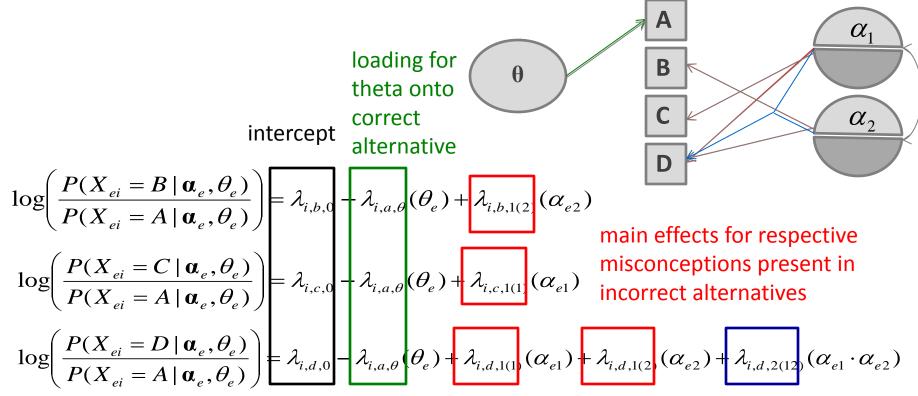

- In the SICM Model, the item response is a function of
  - 1. Ability, as in the NR IRT model
    - Continuous trait
  - 2. Attributes, as in diagnostic classification models (DCMs)
    - Categorical traits
    - Attributes are defined as misconceptions instead of skills or abilities
- SICM model specifications:

$$\begin{bmatrix} q_{\alpha_1} & q_{\alpha_2} & q_{\theta} \end{bmatrix}$$
  
A [0 0 1]  
B [0 1 0]  
C [1 0 0]  
D [1 1 0]




#### **SICM Model Item**






- SICM model estimates can be used for:
  - Classifying examinees according to misconceptions to tailor instruction or remediation



 Comparing examinees' abilities for ranking or accountability purposes

#### SICM Model Item Response Function for Example Item



Model is identified by setting the parameters in the baseline category (A) to zero and by standardizing the continuous predictor ( $\theta$ ). interaction between two misconceptions in D



## **Example Data Analysis**

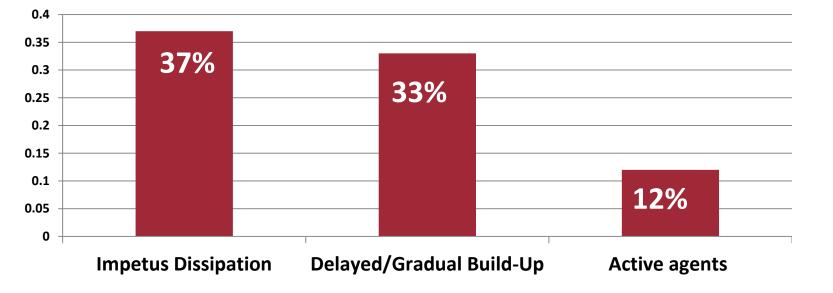


#### Force Concepts Inventory (FCI)

- Test that seeks to identify misconceptions students have about Newtonian force concepts
- Careful test construction efforts to write incorrect options to be reflective of student misconceptions
- One of the most widely administered tests in physics education

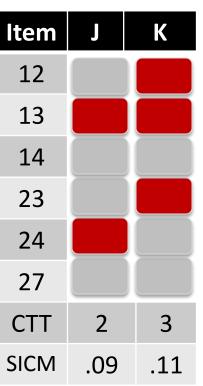
 Purpose: illustrate SICM model's use to scale ability and provide categorical misconception feedback

#### Force Concepts Inventory (FCI)


- 30 item test
- First 3 misconceptions measured by at least 5 items were included in the SICM model
  - Misconception 1: *impetus dissipation*
  - Misconception 2: gradual/delayed impetus build-up
  - Misconception 3: *only active agents exert force*
- Each misconception measured by 6 items
   Measured by 10, 7, and 6 options, respectively
- Data: 10,039 high school students enrolled in a physics class

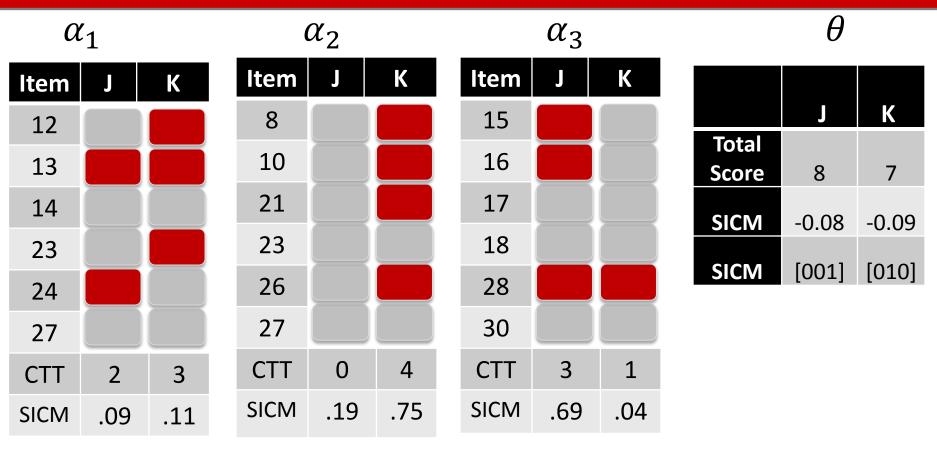
### Results: Some Highlights

- Relative model-data fit
  - SICM model was a more parsimonious model that the NR-IRT model
- Diagnostic quality of incorrect options
  - For average ability examinees, possessing a misconception increased the probability of selecting an aligned incorrect option on average by 10.8%, 10.5%, and 29% for Misconceptions 1-3, respectively


### **Results: Some Highlights**






### **Results for Students J and K**







## Results for Students J and K



| Misconception    | Diagnosis     | J     | К     |
|------------------|---------------|-------|-------|
|                  | Cut-off 2     | [101] | [110] |
| No Misconception | Cut-off 3     | [001] | [110] |
|                  | Probabilistic | [001] | [010] |



# **Simulation Study**



#### Simulation Study Design

| Characteristics |                                                                                               | Value or                          | Interval     |                                             |
|-----------------|-----------------------------------------------------------------------------------------------|-----------------------------------|--------------|---------------------------------------------|
| Test            | Number of Items                                                                               | 30, 60                            |              |                                             |
| Sample          | Number of Examinees                                                                           | 3000; 10,000                      |              |                                             |
| Measuremen      | t                                                                                             | Low                               | High         | 64                                          |
| Model           | Sampling interval for intercepts                                                              | (5, .5)                           |              | Conditions                                  |
|                 | Sampling interval for $\alpha$ main effects                                                   | (.75, 1.25)                       | (1.75, 2.25) |                                             |
|                 | Sampling interval for $\lambda_{\theta}$<br>Sampling interval for two-way interaction effects | (.25, .75) (1.0, 1.5)<br>(0.5, 1) |              | 50<br>Replications<br>for Each<br>Condition |
|                 | Higher-order interactions                                                                     | 0                                 |              |                                             |
| Structural      | Number of Attributes (Misconceptions)                                                         | 3,6                               |              |                                             |
| Model           | Tetrachoric Correlation among Attributes                                                      | tes 0.25,0.50                     |              |                                             |
|                 | Distribution of Continuous Trait                                                              | <b>N</b> (0,1)                    |              | -                                           |



# **Concluding Remarks**



#### **Concluding Remarks**

- SICM model addresses a growing demand for assessment systems: to gain more feedback about what students do not understand
- Ranking individuals and providing diagnostic feedback are two "commonly co-occurring" purposes of a test that may be viewed as "fundamentally antithetical purposes" in commonly used testing paradigms (Wainer et al., 2001, pg. 342)
- SICM model diagnostic feedback complements traditional measures of overall ability
  - Reliably measure and statistically account for misconceptions



### Questions? Comments? laineb@uga.edu

#### Thank you!

