The College Ambition Program (CAP) is designed to encourage low-income and minority students to enroll in college. The following analysis presents updated results from my AERA presidential talk in 2014. Results indicate that CAP, which is a schoolwide intervention, increased college attendance for low-income and minority students in seven treatment high schools compared to 31 control schools by 8%. The 8% increase is largely concentrated in students who would have not attended college but instead enrolled in 2-year institutions. The modest effects of CAP should be viewed as positive and encouraging, especially providing direction for replication and scale-up.

Keywords: accountability; achievement gap; colleges; educational policy; hierarchical linear modeling; multisite studies; postsecondary education; program evaluation; quasiexperimental analysis; regression analyses

Introduction
When Caroline Hoxby and Chris Avery estimated that approximately 35,000 low-income students with test scores on the SAT in the top 10 percent did not even apply to a single highly selective university, the news was all over the media (Hoxby & Avery, 2012; Vedantam, 2013). As educators, we recognize that not everyone can be in the top 10 percent and qualified for admission to Harvard, Princeton, Stanford, or Yale. However, even more disconcerting than the 35,000 high-performing students who are mismatched are the 150,000 low-income and minority on-time high school graduates each year who choose to enroll in postsecondary institutions that are less selective than their aspirations, grades, and test scores would predict (Schneider & Stevenson, 1999; Snyder & Dillow, 2013). These 150,000 qualified low-income and minority high school graduates are not applying to institutions where they have a greater chance of

1Michigan State University, East Lansing, MI

This article was adapted from the presidential address given on April 5, 2014, at the American Educational Research Association annual meeting in Philadelphia, Pennsylvania.
obtaining a college degree, becoming gainfully employed, and continuing their postsecondary education if they so choose. If things keep going as they are, we are likely to lose over 1.5 million mismatched students over a decade.

Research indicates that attaining a bachelor's degree means higher incomes, better health, and more social and political involvement (Cohen & Syme, 2013; Hillygus, 2005; Oreopoulos & Petronijevic, 2013). If you have a bachelor's degree, you can expect to earn about 65% more than a high school graduate during your working life (Baum, Ma, & Payea, 2013). We are losing not only the most talented low-income and minority adolescents but also those who are the engine that makes our country run. Our increasingly technological society needs an educated electorate (National Science Board, 2007)—that requires advanced numeracy and literacy skills regardless of occupational choices and family background characteristics.

What, then, are the solutions to this problem? And how can we fix it? Many of our colleagues have pointed to the need for high-quality preschools and early education programs to enhance academic performance and social and emotional development (Jalongo et al., 2004; Levin & Schwartz, 2007; Pianta & Rimm-Kaufman, 2006; Waldfogel, 2004). We applaud their efforts, but we need to consider both the beginning and end of the formal schooling process. For every year we fail to take action at the high school level, an increasingly large number of young people are beginning the next part of their lives ill equipped for the economic, social, and health issues awaiting them.

The Problem

Over a hundred years ago, as a nation, we decided on the importance of a K–12 education system (Kirst & Usdan, 2009). Now, despite our being bound by that same system, it is time to make a change and extend our students’ educational experiences through postsecondary school. Some have suggested extending high school to include a year of national service (Smith, 2015) or post–high school programs offering more specialized technical training (Brand, Valent, & Browning, 2013). The extension of formal education into postsecondary education and training has attracted policy decision makers, most recently with increased federal aid to attend community colleges. My focus, however, is on increasing enrollment in college that matches student interests and ability, which I argue is likely to enhance persistence and completion (Csikszentmihalyi & Schneider, 2000; Schneider, 2009; Settersten, Ottusch, & Schneider, in press).

In the 1990s, I conducted, with my colleagues Charles Bidwell, Mihalyi Csikszentmihalyi, and Larry Hedges, the Alfred P. Sloan Study of Youth and Social Development, a longitudinal study of over 7,000 students across the country, to learn how adolescents form ideas of careers (Csikszentmihalyi & Schneider, 2000). On the basis of those data, new original historical research, and re-analyses of five national longitudinal databases, my colleague David Stevenson and I wrote The Ambitious Generation: America’s Teenagers Motivated but Directionless (Schneider & Stevenson, 1999). Visiting high schools and community colleges across the country, we found that nearly 60% of high school students were what we termed unaligned—that is, their education expectations and occupational aspirations were not consistent with each other. Students either underestimated or overestimated the amount of education for the job they expected to have in the future.

Today, the overwhelming majority of high school students across all income brackets expect to attend college (Kena et al., 2014). But obtaining a bachelor's degree is no longer “enough.” Since 1972, the percentage of high school seniors expecting to obtain an advanced degree has tripled from 12% to 38% (Ingels, Dalton, & LoGerfo, 2008). The number of high school seniors expecting to work in professional careers is at an all-time high, with 74% of high-income students, 62% of middle-income students, and 53% of low-income students aspiring to professional careers. Regrettably, it is many of these 53% low-income students (a higher proportion of them minority) aspiring to work in occupations that require an advanced degree who are selecting to enroll in postsecondary programs unlikely to lead them to fulfill their goals. In stark contrast, among middle- and high-income students, only a few decide to enroll in postsecondary institutions that are not matched to their long-term goals. The matching process for middle- and high-income students is supported by the advice and guidance of their parents, counselors, and other relevant social networks.

Middle- and high-income parents start early, socializing their children to the competitive schooling process. The idea of high-stakes admission criteria, portfolio building, “safety schools,” and rejection are now fairly commonplace, especially in urban and suburban areas with multiple students applying to highly selective colleges. The image of the helicopter parent applies to many middle- and high-income family members who hover over their children, helping them to transition to the right college (Lipka, 2007; Lum, 2006). Parents engage in a litany of activities to increase grades, test scores, and participation in extracurriculars, all of which are directed at ensuring that their adolescents are competitive, smart, and well-rounded college applicants. College consultants, precollege summer camps, intensive tutorial programs, and multiple college visits are common (National Center for Education Statistics, 2015). Even during the recent economic slowdown (Alon, in press), middle-income families have continued to invest in these activities, oftentimes making significant financial and personal sacrifices to prepare their children for the best colleges to which they can apply.

In contrast, many low-income parents do not have the human and financial capital to spend on the extra resources that middle- and high-income families allocate to prepare their adolescents for college. In some instances, low-income parents with limited college experiences are unaware of what these resources are and how to access them even when they are available for free. Instead, they rely on the schools to take on this activity; but the high schools are often in a financial bind, trying to meet federal guidelines for acceptable performance, and resources are directed at remediation and credit recovery (Saw et al., 2015).

In many of these high schools, the college counseling staff is often overwhelmed with the progressively complicated college admission and financial assistance process (Burkander, 2014; Csikszentmihalyi & Schneider, 2000). It is often assumed that the resource issue can be solved by simplifying the process for obtaining financial aid. This solution seems
somewhat underdeveloped especially since the amount of assistance falls short in most instances to adequately cover the costs of attaining a 4-year degree for students in low-income households (Alon, 2011; Dynarski & Wiederspan, 2012). It is not surprising that the economic disparity between high- and low-income students who attend a 4-year college is quite alarming. There are three times as many middle-income students attending college as low-income students. If you are wealthy, your friends will most likely also be attending college; 80% of students in high-income families will attend college after high school graduation (Snyder & Dillow, 2013). This rising income gap regarding college enrollment may be out-pacing the elementary and secondary achievement gap, and it is the one we need to study more closely to understand the long-term effects of inequality of educational opportunity.

Conceptual Framework

It was the wide resource differences between the lives of low-income and middle- and high-income adolescents that spurred the initial motivation for CAP. Three key concepts, formed on the ideas in The Ambitious Generation, provided the framework, which includes (a) visualization—being able to see oneself as a college student; (b) realistic actions—recognizing one’s strengths, abilities, and skills and allocating resources to master them; and (c) strategic plans—forming a path that maximized one’s college expectations given personal preferences for certain types of college academic and social environments, interests in particular majors, and recognition of talents and skills.

It is important to underscore that our work stressed the importance of aligned ambitions for all students constructing a college planning process based on interests, strengths and weaknesses, and economic and social resources. We were not focused on analyzing or advocating the value of matching college preparation test scores with indicators of college competitiveness or reputations, especially for high-performing low-income and minority students (as examined by Bowen, Chingos, & McPherson, 2009; Melguizo, 2010; Roderick, Coca, & Nagaoka, 2011). Our work and recent work by Alon (in press) suggest that students, especially those who are low-income and minority, taking into account their high school grades and test scores, are more likely to succeed in institutions that are more aligned with their ambitions and strategic actions. Our interest was and continues to be helping young people access higher education institutions (in both 2- and 4-year institutions), given their preferences, academic record, and social and economic resources.

For each of these constructs, a set of activities was created, including working with near-age mentors, visiting colleges, selecting appropriate courses for college entrance, choosing realistic colleges, completing the Free Application for Federal Student Aid (FAFSA), identifying scholarships, and supporting actual fall enrollment. Now, most of these ideas have been reviewed, tested, and reported in Education Evaluation and Policy Analysis, National Bureau of Economic Research papers, and a variety of other journals and the media, so what is new here? In fact, the field of identifying what discrete factors would help low-income and minority students enter college has become very crowded since 1999. The studies in Table 1 represent some of the exceptional research studies that have been conducted through either experiments or observational studies and that promote college going among low-income and minority youth.

Description of CAP

Given the number of studies now being undertaken, one major question is how is CAP different from other experiments and initiatives? CAP is a whole-school design, targeted at traditional public comprehensive institutions—not charters or schools receiving substantial resources. Our sample includes both urban and rural high schools. The goal is to establish personal relationships with students, teachers, and school staff and strengthen neighborhood and community connections. This idea grew from Trust in Schools (Bryk & Schneider, 2002), in which we argued that reform, especially in schools serving low-income and minority youth, cannot occur without a deep personal commitment by individuals working in schools to place the personal welfare of the children first and to provide them with realistic tools to accomplish them. We recycle using materials from government websites, free information from ACT and SAT, and affiliations with other programs engaging in college visits; secure fee waivers on admission forms; and access scholarship dollars, which helps make CAP low cost and scalable. Finally, and perhaps most importantly, we highlight college majors that students may be unfamiliar with, such as those in science, technology, engineering, and mathematics, as potential areas for future postsecondary study (for fuller descriptions of CAP, see Schneider, Broda, Judy, & Burkander, 2013; Schneider, Judy, Mazuca, & Broda, 2014).

CAP is organized around a center staffed by a coordinator who provides tutoring and mentoring (especially in mathematics and science), course counseling and advising, financial aid planning, and college visits. The site coordinators are the heart of this intervention, and it is their relationship with their students that we monitor and measure. This year, we substituted graduate student site coordinators with part-time teachers to (a) reinforce the importance of college attendance in regular and supplemental classroom work, (b) staff the center with highly skilled math and science teachers that could offer advanced subject matter expertise, (c) strengthen bridges with other teachers and college and social services personnel, and (d) bolster the possibility of scale-up, especially in retaining high-quality faculty who might be targeted for budget reductions.

Research Design

“Does CAP work?” The program was designed as a quasi-experiment whereby the sample, method, measures, and analytic plan would produce robust evidence that would or would not warrant a larger independent third-party evaluation. To that end, we have conscientiously produced field manuals of procedures, measures developed from existing studies and a few new ones, codebooks, and a continuing chronological record of statistical analysis for future replication.

Sample selection. Using state administrative data, census data, and the Common Core of Data, we identified potential sites that had lower–than–state average college enrollment rates. Initially, we
selected schools close to Lansing, Michigan, to monitor the initial development goals and make modifications when necessary, such as better mechanisms for recording dosage. To obtain our matched control schools, we used state administrative data to obtain covariates from the 2005–2006 school year to the 2009–2010 school year, including 5-year postsecondary enrollment, school size, percentage free and reduced lunch, student mobility, student-teacher ratio, school location, graduation rates, dropout rates, and ethnic diversity. Schools that closed or were repurposed as charters were excluded from our analysis. The schools range considerably in size from about 300 to 1,200 students, and all of them serve economically disadvantaged students, with many of them over 70% eligible for free and reduced lunch. In many of these schools, the students are first in their families to attend college. Each year, after selecting our control schools, we conduct an analysis to ensure that there are no differences between treatment and control groups.

Table 2 tracks our gradual rollout from 2010–2011 to 2013–2014. This year, we continued to work in 13 schools to test our newest modification using teachers as site coordinators. For the 2015–2016 academic year, we are negotiating with several schools to bring our treatment sample up to 20, which allows us to be confident of our power estimates of treatment effects.

For the following analysis, we compare postsecondary outcomes between the seven CAP schools and 31 controls for the 2012–2013 school year. Table 3 shows the number of students and college enrollment rates in the treatment and control school groups for 2012–2013.

Models

We conducted two analyses. The first is for the single year 2012–2013 with three binary indicators of student college enrollment (i.e., 4-year college attendance, 2-year college attendance, or no college enrollment). The main independent variable is a binary indicator coded as 1 if a school was a CAP treatment school and 0 if not. The second analysis shows CAP effects combining enrollment data for 2 prior years of treatment implementation. This pooled analysis takes into account trends over time in contrast to the effects for the single-year treatment effect of 2012–2013, which could be subject to multiple confounds that could bias our results.

Since students were nested in schools, we used a two-level hierarchical linear model (HLM; Raudenbush & Bryk, 2002) to account for clustering within groups. Specifically, our Level 1 model (student level) is
Table 3

<table>
<thead>
<tr>
<th>Variable</th>
<th>CAP Schools (n = 7)</th>
<th>Control Schools (n = 31)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students</td>
<td>872</td>
<td>3,180</td>
</tr>
<tr>
<td>Post-treatment college enrollment rates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 year</td>
<td>30.9%</td>
<td>30.9%</td>
</tr>
<tr>
<td>2 year</td>
<td>35.4%</td>
<td>27.1%</td>
</tr>
<tr>
<td>Non-enrollment</td>
<td>33.8%</td>
<td>42.0%</td>
</tr>
</tbody>
</table>

Note. CAP = College Ambition Program.

\[Y_{ij} = \beta_{0j} + ST_{ij}\beta_{2j} + \epsilon_{ij} \]
\[\beta_{0j} = \gamma_{00} + \gamma_{01}T_j + \mu_{0j}, \]

where \(Y_{ij} \) is the binary indicator coded as 1 if student \(i \) in school \(j \) went to college (i.e., 4 year, 2 year, or no college) and 0 otherwise; \(ST_{ij} \) is a row vector of student background characteristics, including gender (a binary indicator), race (multiple binary indicators for Black, Latino, and other-race students—White students the reference group), socioeconomic status (a binary indicator for eligibility for free or reduced-price lunch—no eligibility the reference group), special education status (a binary indicator of special education students—no special education status the reference group), and limited-English-proficiency status (a binary indicator for students with limited English proficiency—English proficiency the reference group); \(\beta_{2j} \) is a column vector of regression coefficients of student characteristics; and \(\epsilon_{ij} \) is the Level 1 residual.

For the Level 2 model (school level), we assume that only the intercept is random, namely, where \(T_j \) is a binary indicator coded as 1 if a school received the CAP treatment and 0 if not; \(\gamma_{01} \) is the coefficient of the treatment that can be interpreted as the average difference in terms of proportion of students enrolling in college between CAP treatment and control schools in the 2012–2013 school year, and \(\mu_{0j} \) is the Level 2 residual.

For the pooled analysis, we conducted a two-level HLM, in which time is nested within schools, with school average college-going rates (i.e., 4 year, 2 year, or no college) from 2010–2011 to 2012–2013 as the outcome at the first level:

\[P_{ij} = \beta_{0j} + \beta_{1j}Year_{2011} + \beta_{2j}Year_{2012} + \epsilon_{ij} \]
\[\beta_{0j} = \gamma_{00} + \gamma_{01}T_j + \mu_{0j}, \]

where \(P_{ij} \) is school-level average college enrollment (i.e., 4 year, 2 year, or no college) for school \(j \) in year \(i \). To control for the potential trend effects, we also added two year-specific dummy variables (Year2011, Year2012) with the school year of 2012–2013 as the reference group. \(T_j \) is a binary indicator coded as 1 if the schools received the CAP treatment and 0 if not, and \(\gamma_{01} \) is the coefficient of the treatment that can be interpreted as the average difference in terms of percentage of student college going between CAP treatment schools and control schools over the school years 2010–2011 to 2012–2013.

Results

Table 4 summarizes the results from the two-level generalized linear model for the 2012–2013 school year. The effect of CAP treatment on 4-year college enrollment was essentially zero (\(\gamma_{01} = 0.006 \)), although the sign is positive but insignificant. The effect of CAP treatment on 2-year college enrollment (\(\gamma_{01} = 0.076 \)) was positive and marginally significant at the 0.10 level, which indicates the CAP program had a positive impact on 2-year college enrollment. In addition, the effect of CAP treatment on non–college enrollment (\(\gamma_{01} = -0.083 \)) was negative and significant at the 0.01 level. The coefficients from this analysis can be interpreted as the average treatment effects of the CAP program in 2012–2013. Therefore, according to the results shown in Table 4, CAP treatment increased 2-year college enrollment by about 7.6% on average for students in CAP treatment schools, whereas CAP treatment decreased non–college enrollment by about 8.3% on average.

Table 5 summarizes the results from the school-level analysis using two-level HLM models with pooled school-level college enrollment information from 2010–2011 to 2012–2013. Overall, CAP treatment effects were quite similar to those estimated using the student-level analysis as shown in Table 4. In particular, the CAP treatment effect on 4-year college enrollment (\(\gamma_{01} = 0.031 \)) was close to zero and not significant. However, the CAP effect on 2-year college enrollment (\(\gamma_{01} = 0.087 \)) was positive and significant, whereas the effect on non–college enrollment (\(\gamma_{01} = -0.118 \)) was negative and significant at the 0.001 level, which indicates that CAP treatment increased student 2-year college enrollment by about 8.7% and decreased non–college enrollment by 11.8% on average.

To assess the robustness of our primary estimation results (presented in Table 4), we follow the sensitivity analysis procedures suggested by Frank, Maroulis, Duong, and Kelcey (2013) to quantify the bias necessary to invalidate our inferences in terms of sample replacement. This procedure finds that we comfortably reached the threshold of 34% (i.e., we would need to replace about one third of the total schools that showed no effect on CAP enrollment to invalidate our results), which is quite robust for experiment and observation studies.1

Discussion

When I presented this work in my presidential address, our results showed only a 4% increase in college enrollment. We now
have almost an 8% increase in 2-year enrollment, which means out of 100 students, eight who were not going to enroll in college did enroll in 2-year programs. Overall, we changed the trajectory of 72 students (out of 872 students in CAP schools), not a terribly huge effect, and our standard errors are large (mainly because our current sample size is small and school enrollments fluctuate a great deal). Still, we argue that these effects are meaningful. We are working in some of the most difficult schools in the state. They are not receiving huge amounts of resources from governmental, philanthropic, or private sources; they are simply public schools where large proportions of poor and minority students attend. For many of these students, matriculating to a 2-year institution is their only financially feasible option, often due to extenuating family and work obligations. This 8% difference is what we call a modest effect, and increasingly, researchers are encouraging scientists to see these modest effects as real and as opportunities for replication and potential scaling.

What Are We Learning?

Methodologically, the confounds for estimating the differences between treatment and control schools are perhaps more varied and greater in intensity than those typically captured with large-scale econometric models. For example, at one school in 2009, there were threats of school closure, and to counteract declining enrollment, more special needs students and refugee non-English-speaking adolescents were redistricted to attend this school. These administrative changes may have altered subsequent gains in college enrollment through the treatment intervention years. Michigan has one of the largest school choice programs in the country, and in nearly all of the low-income and minority schools, we find declining enrollments with students moving to charters or other public schools. Our best-matched urban control schools often are the ones that have closed, and for this preliminary analysis, we have had to replace three of the 10 urban control schools. By actually being on the ground and knowing our schools so closely, we are aware of changes in leadership, changes in student composition, and changes in state and district policy and teacher and student mobility—all of which destabilize the possibility of achieving stable unit treatment effects.

The school communities we serve write about us in church bulletins and interview us for local presses, and we have school districts asking us to bring CAP to their schools. Fortunately, we have not yet been asked to leave a school. But I am not going to be Pollyannaish about what we see. Change in urban and rural

<table>
<thead>
<tr>
<th>Variable</th>
<th>4 Year</th>
<th>2 Year</th>
<th>No College</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAP treatment effect</td>
<td>0.031 (0.037)</td>
<td>0.087** (0.033)</td>
<td>−0.118*** (0.028)</td>
</tr>
<tr>
<td>Number of repeated measures</td>
<td>69</td>
<td>69</td>
<td>69</td>
</tr>
<tr>
<td>Number of schools</td>
<td>38</td>
<td>38</td>
<td>38</td>
</tr>
</tbody>
</table>

Note. Standard errors are reported in parentheses. HLM = hierarchical linear model; CAP = College Ambition Program. *p < .05. **p < .01. ***p < .001.
schools is exceedingly difficult. Experiments are important, but results obtained from real-life experiences are simply not as clean as those found in the laboratory, where we can control the conditions. We have had some success stories, but the methodological, statistical, and contextual issues are real and need further research and understanding.

Substantively, at an institutional level, we have learned that college visits tend to change expectations and form concrete visualizations especially for students who have never been on a college campus—which, in this case, is most of the students. Scholarship aid is fundamental to attendance, but students need additional help in learning how much they need to pay for college; the college bills can be as daunting as the FAFSA form itself. The challenges for changing college enrollment patterns of urban and rural youth are simply not the same. Some of the constraints that rural students encounter in choosing the right college for themselves are very different from the constraints of urban youth. Matching colleges to student interests and abilities is more than a list, especially when taking into account familial expectations and historical and cultural contexts.

On the more personalized student side, our surveys and interviews show that subjective feelings are domain specific; adolescents can be confident about a lot of things but not confident about applying to college. If there is a strong tie with the site coordinator, an adolescent is more likely to follow through on his or her plans. Filling out the forms and learning about different colleges is not enough. Students need to see realistic evidence that attending a different type of postsecondary institution will make a difference in their lives. Enrolling in college is only part of the story, as many of my colleagues have pointed out; persistence and completion are critical (Dynarski, 2015), especially in many of the types of postsecondary school many of these students attend. There is a major need for multiple interventions to help students survive in college. This is not because they are not smart, ambitious, or committed; rather, the navigation of college is as complex as the college application process. The social and emotional challenges of being on one’s own in college can be especially as personally difficult as finding the right college.

Conclusion

In summary, schools are dynamic places where leadership, teachers, students, and curriculum are often in a state of flux. As Gamoran (2012) argues, reforms need to take into account the instabilities typical of large urban districts, including staff turnover and state funding cuts. Successful reforms need a “scholarship of scale-up”—a research agenda with strategies and mechanisms for scaling up reform. Partnerships are key for research in schools; we are guests in schools—students, teachers, and administrators are not our clients or patients—and we are all on the same page, working together and trying to improve learning and instruction. Changing student behaviors and plans depends on personal interactions with a trusted knowledgeable individual; personal contact cannot be underestimated. And finally, college interventions should be low cost and designed from the onset to be scalable, such that the costs can be reasonable enough to implement in the over 8,000 U.S. public high schools serving low-income and minority students.

NOTES

Funding was provided by the National Science Foundation (Grant No. DRL-1316702) and the National Institutes of Health (Grant No. 5R01GM102637-03).

A special call out to our 2012–2014 past research team: Justina Judy Spicer, who has been the most incredible research director and data manager; Christina Mazuca, the project coordinator who made this happen every day; and Kri Burkander, who kept us listening and reporting what the teenagers are truly feeling. And of course I thank Guan Saw, my trusted and analytic superb student, who is a second and third set of eyes on everything we do from conceptualization to analysis. Finally I extend my deepest appreciation to assistant professor Michael Broda, now beginning at Virginia Commonwealth University, and postdoctoral fellow Wei Li, now moving to the University of Missouri, who helped me with this and other analyses and kept sharing numbers with a smile even when I asked them to do one more thing—which usually meant many more things over and over again. Everyone has a dream and that is what keeps me returning to our schools and planning to move to other states. Seven out of a hundred may not seem like a lot, but there are over 8,000 regular comprehensive public high schools serving predominately low-income and minority students. Even if we worked in only a quarter of them, we might be able, at a minimum, to change the lives of thousands of students—and that’s a dream worth pursuing.

To invalidate the inference of the College Ambition Program effect on non–college enrollment, the bias must account for 1–(1.96*0.028/0.083) = .34. Approximately 34% of the total school sample would be required to invalidate the inference (34% × 38 = 13 schools; see Frank, Maroulis, Duong, & Keelsey, 2013).

REFERENCES

Appendix

References for Works Listed in Table 1

